

Neelima Sehgal Stony Brook University

Outline

The CMB in a Nutshell

 Current Dark Matter Annihilation Bounds from the CMB

Outline

• The CMB in a Nutshell

 Current Dark Matter Annihilation Bounds from the CMB

Cosmic Microwave Background

New Generation of Microwave Observations

New Generation of Microwave Observations

COBE Satellite 1994

WMAP Satellite 2003

Planck Satellite 2013

Other CMB Experiments

Dedicated to r

Neelima Sehgal, Stony Brook

Amir Hajian for ACT

ACTpol / AdvACTpol

ACTpol - Observes from 2013 - 2015

~4000 sq deg (10% of sky)

4 x better sensitivity than Planck

5 x better resolution than Planck

AdvACTpol - 2015 - 2017

~20,000 sq deg (50% of sky)

4 x better sensitivity than Planck

5 x better resolution than Planck

Made by Clem Pryke

Planck Power Spectrum

Parameters Change CMB Power

Credit: Anthony Challinor

CMB Polarization

Polarization: How It Works

how we see it...

how WMAP sees it...

CMB Polarization

First Results from ACTpol

Best High-ell EE Power Spectrum Measured to Date!

Outline

The CMB in a Nutshell

 Current Dark Matter Annihilation Bounds from the CMB

Dark Matter Annihilation During Recombination

Energy Deposition in Pre- and Post-Recombination Gas/Plasma

Effect of Dark Matter Annihilation on CMB

Universal Energy Deposition Curve

$$f(z) = \sum_{i=1}^{41} \alpha_i f_i(z)$$

$$f(z) = \sum_{i=1}^{41} \beta_i e_i(z)$$

 eta_1 gives 99.9% of CMB power spectrum variance

Padmanabhan & Finkbeiner; Slatyer, Padmanabhan, Finkbeiner; Finkbeiner, Galli, Lin, Slatyer

Madhavacheril, NS, Slatyer 2014, PRD, (1310.3815)

Neelima Sehgal, Stony Brook

Madhavacheril, NS, Slatyer 2014, PRD, (1310.3815)

PAMELA/Fermi/AMS-02

e.g.
$${
m DM} + {
m DM} \to A'A', \quad A' \to e^+e^-, \; \mu^+\mu^-, \; \pi^+\pi^-$$

Arkani-Hamed et.al., Pospelov & Ritz

(based on fit by Cholis & Hooper, 1304.1840)

Fermi Inner Galaxy

Hooper & various collaborators

 $DM + DM \rightarrow hadrons/leptons$

Conclusions

- Dark matter annihilation constraints from CMB and Low-z data have been updated
 - New limits are a factor of 2 better than before
 - Constraints are probing interesting regimes
 - Future reach of Planck and Advanced ACTpol is exciting- may find/confirm a DM signal with CMB